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Where we are

=== Foundational Concepts ===

v 02 -- Supervised learning refresher

v 03 -- Shallow networks and their representation capacity
v 04 -- Deep networks and depth efficiency

v" 05 -- Loss function in terms of maximizing likelihoods

v" 06 — Fitting models with different optimizers

v 07a — Gradients on deep models and backpropagation

v 07b — Initialization to avoid vanishing and exploding weights &
gradients

v 08 — Measuring performance, test sets, overfitting and double
descent

v 09 — Regularization to improve fitting on test sets and unseen data
=== Network Architectures and Applications ===

v 10 — Convolutional Networks

e 11 — Residual Networks and Recurrent Neural Networks

e 12 —Transformers

* Large Language and other Foundational Models

* Generative Models

* Graph Neural Networks



Topics

e Residual connections and residual blocks
* Exploding gradients in residual networks
e Batch normalization

e Common residual architectures
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Previously we saw a sequential network:

hl — fl :Xa ¢1] h, h, h,
hy = fo[hy, ¢y x y
hs = f3]hs, @)
y = f4 _h37 ¢4_
Fully connected network: Convolutional network (e.g. 1 channel = 1 channel):

h; =a|B+wiz; 1 + wor; + w3T;i1]
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Previously we saw a sequential network:

h, = fi[x, ¢,] h h h

hy = f[hy, ¢, x : : :
h; = f3]hy, ¢4

y = f4hs3, ¢,

Can think of as a sequence of nested functions:

y =14 [fza {fz [fl X, P41, ¢2] ; 4’3} ; ¢4]



More layers are better...
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More layers are better... up to a point
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What’s going on?

Not completely understood, but...

Take a look at dy/dx for shallow and deep networks. Gradients of deeper networks
are much less correlated!
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A small step in gradient descent may jump to wildly
different valued gradient!



What's going on?  The Shattered Gradient Phenomenon

Not completely understood, but...

Take a look at dy/dx for shallow and deep networks. Gradients of deeper networks
are much less correlated!
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A small step in gradient descent may jump to wildly
different valued gradient!
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What's going on?  The Shattered Gradient Phenomenon

y =1 [f3 {fQ [fl X, 4], d’z] ; 9/)3} ; ¢4]

The derivative of the output y w.r.t. the first layer f; is, by the
chain rule:

c‘?fl N 8f3 (‘9f2 8f1

f; impacts f, impacts f;, etc...
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Solution: Residual connections

Regular sequential network:

h, =[x, ¢,] h b, b,

g ,
hz = f3|hs, ¢;]

y = f4]h3, @]

Residual network: /
h; = x + f1]x, ¢4]

hy = h; + f2hy, @]

"""""" I f »a ‘ f o f X ], Y s
SR A SR R I R AN S N K

y =hs + f4|hs, ¢,

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015, http://arxiv.org/abs/1512.03385
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http://arxiv.org/abs/1512.03385

Residual Network
Residual connections

h; = x+ fi[x, ¢ /
hy =h; +f5|h;, ¢,
=

hs = hy + f5|hy, ¢5] i

........... I . ‘ X | N
y =hz +1fihs, ¢, ’ >@h >@h h3’9

Substituting in:

y =x + fi[x]
+ f5 :X—f—fl[XH

+ f3 :x+ f1[x] + f5 [X+f1[X]H

xRl ot 0] o x o i + e 1]
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Residual Network

We can unravel all the possible paths

The output is the sum of the input plus 4
partial networks.

y =x + fi[x]
+ fox + fi[x]]

+ f[x+ ] + B [x + ]|

+ f1 [X+f1 +f) X+fl[X” —{—f;[x—i—ﬂ [x] +f7|—X+fl[XH}]
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Residual Network as Ensemble of Networks

X

> fl fy [x]

) f5 [X + f3 [X]]
> f1 > f2

J— \ Ensemble of four networks
S l

— v fs [x + fi[x] + fo[x + £ [XH:| yYy
> fl L f2 f3 :f\) >y

A

>

Another ensemble of four
networks

ol
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Residual Network as Ensemble of Networks

o il * 16 possible paths through the
|
ol + 1] network!
> f1 > f2
o \ * 8 pathsinclude f,
— v l f3|x + f1[x] + £ [x + £1 [x]] | YIY .
o bl fs | }/\J\ -y * The influence of f, on dy/df; takes
X : 8 different forms
- £
5D * Gradients on shorter paths
""" 1 ) ) 2
generally better behaved.
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Residual Network as Ensemble of Networks
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Order of operations is important

a)

b)

C)

X ReLU é}—»

X —>[Linear|~>{ReL.U &

——>[ReLUHLinea rHReLUHLinea rJ—>$—>

Can only add to the residual
because of the RelLU

More flexible approach to end
with linear block.

Starting with linear block gives us
some flexibility on spatial
resolution.

Note: if we start with a RelLU,
then will clamp negative values
and so do nothing



This helps increase depth
up to a point...



Topics

e Residual connections and residual blocks
* Exploding gradients in residual networks
e Batch normalization

e Common residual architectures
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Exploding Gradients in Residual Networks

x 1 f ¢ 1}\% 2 2»[@2{*> 4

With He initialization we can
control the variance inside

the block
But variance doubles when

we add the residual back in.

4
4 ‘ f3 I4>Q+> 8

'

And then grows exponentially.
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Exp\oding Gradients in Residual Networks

4
XL‘ } 2‘f2l2>6+>4 4If3I4m%8>
1

/ /

Could stabilize by renormalizing after adding
each residual.
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More common to apply batch normalization.
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Batch Normalization (a.k.a. BatchNorm)

x —L>{BN |+ f; ]—»é}——» éfa[BN]—»[ f; ]—%—»

e Shifts and rescales each activation so that its mean and variance
across the batch become values that are learned during training

S. loffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv:1502.03167 [cs], Mar. 2015,
http://arxiv.org/abs/1502.03167
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Batch Normalization (a.k.a. BatchNorm)

x — BNl -{ f; ]-»é%——»égfa[ BN | f3 ]—'é—’

e Shifts and rescales each activation so that its mean and variance
across the batch become values that are learned during training

Calculate the sample mean and standard
deviation for each hidden unit across
samples of the batch.

mp = ‘%‘ Z hz

1
Sh = @ Z(hz - mh)z




Batch Normalization (a.k.a. BatchNorm)

L
* Shifts and rescales each activation so that its mean and variance
across the batch become values that are learned during training

Calculate the sample mean and standard Standardize (normalize) to zero-mean and unit

deviation for each hidden unit across standard deviation.

samples of the batch.
A h‘L — Mp .

1 Z h; < T Vi € B,
mp = 57 hz Sh €
Bl iz
Scale by y and shift by &, which are learned parameters.
— 1 Z(h — mp)? A :
Sho = 3] - i — MMh)”™ hi < vh; +0 Vi € B.



Batch Normalization (a.k.a. BatchNorm)

x — BNl -{ f; ]-»é%——»égfa[ BN | f3 ]—'é—’

* Applied independently to each hidden unit

* Standard FC Network with K layers, each with D hidden units:
KD learned scales, y , and KD learned offset, 0

* Convolutional Network with K layers, each with C channels:
KC learned scales, y , and KC learned offset,

27



Benefits of BatchNorm

1 2 3

L

Stable forward propagation

* Initialize offsets 6 to zero and scales y to 1
* Variance now increases linearly
» kth block adds one unit of variance to variance of k&

* At initialization, later layers make smaller relative change to overall
variation

* During training, the scales can increase in later layers if helpful
—>control the effective depth



Benefits of BatchNorm

Supports higher learning rates
Makes the loss surface smoother (reduces shattered gradients)

a) Residual b) No residual

connections connections

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the Loss Landscape of Neural Nets,” arXiv.org,
https://arxiv.org/abs/1712.09913v3
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Benefits of BatchNorm

Regularization via added noise

BatchNorm injects noise since BN scale and shift depend on batch
statistics



Topics

e Residual connections and residual blocks
* Exploding gradients in residual networks
e Batch normalization

e Common residual architectures
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ResNet (2015)

ResNet Block

> BN >~ReLU}>{ Conv 3x3>{BN}>[ReLUF>{Conv 3x3) >$—»

Bottleneck Residual

—L>{BN}->{ReLUF>{ Conv 1x1 |>{BN}>{ReLU}>{ Conv 3x3 F>{BN}>{ReLUI>{ Conv 1x1 ]—»$—>

Reduce Increase
channels by — 4 X 4 channels by
factor of four factor of four

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015,
http://arxiv.org/abs/1512.03385 32
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Resnet 200 (2016) for ImageNet Classification
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K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv:1512.03385 [cs], Dec. 2015,

http://arxiv.org/abs/1512.03385
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DenseNet

Concatenate to output Concatenate to output Concatenate to output

w
3 channels 32+3=35 channels 32+35=67 channels 32+67=99 channels
Figure 1: A 5-layer dense block with a growth rate of £k = 4.
Fi gure from UDL Each layer takes all preceding feature-maps as input.

Figure from paper

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017b). Densely connected convolutional networks.
IEEE/CVF Computer Vision & Pattern Recognition, 4700—4708. 35



U-Net (2016)

Crop and concatenate

Crop and concatenate

Crop and concatenate

Lol s S S L S S Z =~
N @.8 %18 N TQ8 « 7;,3 < « « < AR BIP Rer
SRR N G N N N co® P ¢ (O R R ¢

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. International Conference on
Medical Image Computing and ComputerAssisted Intervention, 234-241.
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U-Net Results

a)

Figure 11.11 Segmentation using U-Net in 3D. a) Three slices through a 3D
volume of mouse cortex taken by scanning electron microscope. b) A single U-
Net is used to classify voxels as being inside or outside neurites. Connected
regions are identified with different colors. c¢) For a better result, an ensemble of
five U-Nets is trained, and a voxel is only classified as belonging to the cell if all
five networks agree. Adapted from Falk et al. (2019). 37



Stacked hourglass networks for Pose Estimation

Targets Output heatmaps Estimated pose

Output
heatmaps

Hourglass block Hourglass block

&%)
Hourglass block @ /
(s %
* =3 —©
K
] DI ] i

Newell, A., Yang, K., & Deng, J. (2016). Stacked hourglass networks for human pose estimation. European Conference on Computer Vision, 483—499.
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Feature Pyramid Networks

Figure 1. (a) Using an image pyramid to build a feature pyramid.

—ﬁ Features are computed on each of the image scales independently,
-redict : ) .
° which is slow. (b) Recent detection systems have opted to use
(a) Featurized image pyramid (b) Single feature map only single scale features for faster detection. (c) An alternative is

to reuse the pyramidal feature hierarchy computed by a ConvNet
as if it were a featurized image pyramid. (d) Our proposed Feature
Pyramid Network (FPN) is fast like (b) and (c), but more accurate.

predict

- i) ’ In this figure, feature maps are indicate by blue outlines and thicker
- Az lredicy outlines denote semantically stronger features.
(c) Pyramidal feature hierarchy (d) Feature Pyramid Network

T-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature Pyramid Networks for Object Detection,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp. 936—944. doi: 10.1109/CVPR.2017.106.
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Feature Pyramid Networks

!

Figure 2. Top: a top-down architecture with skip connections,
where predictions are made on the finest level (e.g., [28]). Bottom:
our model that has a similar structure but leverages it as a feature
pyramid, with predictions made independently at all levels.

Figure 3. A building block illustrating the lateral connection and
the top-down pathway, merged by addition.

T-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature Pyramid Networks for Object Detection,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp. 936—944. doi: 10.1109/CVPR.2017.106.
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Feedback?



https://docs.google.com/forms/d/e/1FAIpQLSep8ThqLupjjyf4Uos5ChIuK8P-GrhEW5Im67vNzD8m8iNtMA/viewform

